1. Homework 11

Due: In Lecture 11-2

Problem 1. Define $f: \mathbb{R}^2 \to \mathbb{R}^2$ by

$$f(u,v) = (x(u,v), y(u,v)) = (u^2 - v^2, 2uv).$$

Let $\omega = -y \ dx + x \ dy$, and compute $f^*\omega$.

Comment. Pulling forms back is mechanical, and feels like substitution.

Problem 2. If ω and η are differential k- and r-forms, then

$$d(\omega \wedge \eta) = d\omega \wedge \eta + (-1)^k \omega \wedge d\eta$$

Problem 3.(a) Compute the exterior derivative of each of the following forms:

- (1) x dy + y dx
- (2) x dy y dx
- (3) x dx dy
- (4) z dx dy + y dx dz
- (b) In each case that the exterior derivative is zero, find a form of one degree less whose exterior derivative is the given form.